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HOC Spectral Analysis of an Almost Periodic Random Sequence in
Noise

1. Introduction

Consider a stationary random sequence (Zt), t - 0,±l,±2,...,

given by the equation

p
Zt  L (Aj cos W t + B sin w t) + t

j=1

where the amplitudes A J,B J - 1,...,p are random variables and

tt is a random colored noise independent of the AJBa. The

problem addressed in this paper is to determine p and 10...,Wp

from expected zero-crossing counts regardless of the magnitude of

the noise term kt' This can be done under some fairly general

conditions by considering sequences of expected zero-crossing

counts obtained by repeated filtering of (Zt).

Because zero-crossings portray the oscillation in (Zt) the

problem is tantamount to determining p and the w's of extreme-

ly weak signals buried in noise from the oscillation of the process

and its filtered versions. The general message of the present work

is that this is indeed possible.

More precisely, we shall be dealing with the so called higher

order crossings (HOC). Higher order crossings are zero-crossing

counts observed In a process and in Its linearly filtered versions.

The filtering operation may consist of a single operation applied

once or applied repeatedly or It may consist of a succession of

different filters. In this regard, repeated differencing and re-

peated summation play an important role. The shifts or changes In
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the spectral distribution resulting from the filtering operation

are captured very economically by the higher order crossings, a

fact that led to a methodology useful in discrete spectrum analysis

as reviewed in Kedem (1986). The present paper is a refinement of

A the work reported there. Specifically we Investigate the conver-

gence of sequences of expected HOC, as wel as functions of expect-

ed HOC, to the W s under various conditions on the spectrum of

When (Zt) Is Gaussian with mean zero, the oscillation

depicted by the expected HOC Is equivalent to knowing the correla-

tion function. However, HOC have a somewhat more direct interpre-

tation in terms of the spectrum as can be seen from their spectral

representation that will be discussed below.

In the present paper, both (Z t) and R t are assumed to

be stationary and Gaussian. The first part of the paper stresses

aspects of filter design and direct convergence of HOC to discrete

frequencies, while In the second part, consisting of section 4,

the convergence Is achieved rather indirectly by certain functions

of HOC. The main results of this paper are Theorems 3.5 and 4.1

* stated in sections 3.3 and 4, respectively. In Theorem 3.5 we

assume t is white noise, p = 1, and construct a sequence form

expected HOC that converges monotonically to w 1 regardless of

* the signal to noise ratio (that is, the ratio of the standard devi-

ation of the almost periodic component to the standard deviation

of the noise). The discussion leading to this result points to

'S. the difficulties that arise once noise Is added to the almost

periodic harmonic component. The basic idea underlying section 4

3



is the motion of A0 -intervals. These intervals are instrumental

in determining p, .1 .... p regardless of the type of noise and

its magnitude, provided its spectral density is square Integrable.

1.1. The model and definition of HOC.

Let (Xt} represent the almost periodic harmonic component

with p terms, p < ®.

X t - t (Aj cos jt + Bj sin wjt}.

Jul

Withou loss of generality assume

0 < . <6) < ... < ' <if
1 2 p

The {A ),(B are taken as ncorrelated normal random variables

such that

EAJ = EB - -, A B B J = 6J2

A I B = 0 for all i,J.

We assume that (t } is a stationary zero mean Gaussina process

with an absolutely continuous spectrum F and spectral density

f(,,), -it < i i -. For each t, t has a normal distribution with

2
mean 0 and variance a. It follows that

Zt =Xt + t

is a stationary Gaussian process with a mixed spectrum whose spec-

tral distribution function can be espressed as a sum

F(() - Fx(,) + F (W)), -f < ( ) -, U,

where FX  is a right continuous step function with Jumps of size

1.2 at p
24
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Let R be the shift operator Zt M Z_. Then repeated

differencing can be defined by the operator

n

Vnz• (l-Snzt- L-'( 1-9,Zt)k.

k-O

Similarly, repeated summation is defined by

, n~ Z (l+8)nZ ~ n]

k=O

Let (Yt), t = 0,±I,..., be any stochastic process and let x[-]

be the Indicator function. Then the number of zero-crossings in

Yp ..... YN is given by

N N

D * 2ZdY1?0] - 2Zr(YI 10,Y I-~1o - X[Y I Z] - XCY N Oj.
i=l i=1

The number of zero crossings In (Vnz t )N is denoted by Dn+i
t t In+

and the number of zero crossings in (A nZt)N  is denoted by

Dn+1O. Then Dn+ 1 and n+1D are examples of HOC. In general,

when the linear operation is a filter with transfer function H,

the notation DH  is used to signify the HOC corresponding to H.

The problem is to determine p and w1 .... Fp from expected

HOC such as (ED n), (En D) and (EDH).

I, 2. Some moment relations

The second order moments of V nz , nzt  can be expressed

quite compactly by introducing the following sequences. Define

n 2 n

ao(n,e) - ( bo(n,O) = Zt nI cos(&)

5



ak~rlDG) -2{jJ]cos(kG), k-

j-k--1 L

nn

j k-1

ri n
E(A~z 2 1 k (n,O)R(k)

E( zt nzt+i :knORk

k-Q

E(V nZt) 2 = 'Yak nnR()

k=O

n+ 1

E(VnZt vZ t+1 2Lb k(nn)R(k)

k-O

where R(k) =EZ tZ tk

Let p(k) R(k)/R(O) be the correlation function or fZt).

Then from Kedem (1986), the Gaussian assumption implies

* n+ 1

* 1ED Z b k(nn)p(k)

(2.1) Cos[ n-i1 k=O

Z ak(n~lr)p(k)
k=O

and

n*.1

D) Z b k(nO)p(k)
(2.2) cos ]E n k=O

E ak(nO)P(k)

k-O

6
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Let 7
flED, fE.

Ln n Cos a- CO sLNJ"

Then p(O) = 1, p(1) = V = and so (2.1) and (2.2) imply the

existence of a function pM(xlX 2 .... Xm;O) such that

p(m) = pm (l)2 ..... D )m ;M)

(2.3)
= Pm( 1D, ... mV;O), m = 1,...,n

The proof of this fact follows easily by solving (2.1), (2.2)

recursively for p(k) starting from p(O) = 1, and noting that

n+1
b n+(n,w) = (-1) , b n+(n,O) = 1.

Thus

n

p(n+l) = (_ 1 )n+1 ZV ( ' ) n +lak ( n,w ) - bk(n,n))pk(l .... ,Vk;n)

k=O
n

.. Z(n+Vak(n,O) - bk(n,O))pk(l .... ,k;O),
' ' k=O

and therefore for each n, the sequences {p(1),p(2),...,p(n)),

(EDIED2 '.....EDn), and {E 1D,E 2D,...,E 3D) are equivalent.

Lemma 2.1. For a zero mean stationary Gaussian process, the

sequences (ED) 1(E D) and {p(n)) are equivalent.

this equivalence relation shows the relevance of HOC in spec-

tral analysis. It should be noted that the correlation function

may be obtained from many different HOC sequences, not just those

obtained by differencing and summation.

7



3. Filter design and convergence of sequences of expected HOC

We examine the effect of several different filters on zero-

crossing counts when the process (Zt) consists of the harmonic

signal only and also when it consists of signal plus white noise.

That is, = C where (ct) is white noise. In this case
2

f( )= -V' <  W 5 M.

3.1. A complex filter.

Define a process {Yt} by

Yt = (l+ei S)nZt'

Note that Yt depends on n and 0. The transfer function and

squared gain are given, respectively, by

H(X) = (1+e i(O-A))n

IHIX)l2 4 nco
2n( ) .

Observe that (Yt is complex,

Yt u t + ivt

where
~n

Ut = Y Jcos(kO)Ztk
k=O

n
=vt = k sin(kO)Ztk "

k=O

2
It follows that EIYti and Re EYtYt+i can be written in two

equivalent forms as follows. First,

PI



Ely t 1 - HA)1 d x (A) + I H(Afl 1 dF C (

2 J l() 2  1-wC8nO
f~[Cos 2n ro+j +COS 2n ro ji] 4n., o 2nGAdk

anid

Re(EY Yt) Ree iAI JHOL)I 2 CF ()) + J -ik IH I2d

- ~2 2 [o2n ~~+COS 2nr7:1J cos(w)

Second,

EtI2 2 u v2 - (~(~cos((k-)&)R(k-J)

J-0 k=O

= Zakn, 0itRk)
k=O

anid

n) n

Re(EY t t+i) =ut + + Ev t vt+i - : 2 X(fj)[Jcos((k-J)e)R(k-j+l)

J-0O k-0

n+1

k=0

From these relations and (2.3) we obtain

9
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~n+1

-e(~t 1  b (n,O)p(k)
Re(EYtYt+ k=O
EiYt 1

2  n+1

EJ ak(nO)p(k)

k=O

n+1E k=" b (n'e9)P k(Vl ..... 'Dk;lr)

nE a k(nO)P k (V9 ' ,k ;U)

k=O

n+ 1

n
E ak(n,O)pk(1 D.... k; 0)
k=O

o nJ=1 LL ]

(3.1)

When (Zt) is a purely harmonic process, (3.1) provides a way for

determining the 's. By choosing an arbitrary 0 E (0,u], (3.1)

will converge to cos( r) for 6r closest to 0 as n--+®.

More precisely we have

2
Theorem 3.1. Assume = 0, 0 E (0,n] and suppose

le-w I < min (10-(,oI1 21-f)-0).
joir

Then

Re EYt Yt+ 1
2 -- cos (r)."

EYti

Proof. Since cos(x/2) is monotone decreasing in [0,-], the

10
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condition of the theorem implies that

cos> Icosr I, j- r.

The assertion now follows from the last expression in (3.1).

Since cos(x) is monotone in (0,w], obtaining cos(wr] is

equivalent to obtaining w ro r = 1,...,p. Important special cases

. occur for 0 - 0,v.

s. Corollary 3.1. Assume c = 0. Then

wED n

N-1i ( ~p . l-+O

i-E D
n

N-i Co . -- w

Proof. From (2.1), (2.2) and (3.1), as n--+,

n+l

D k=0 -k cos(Wp)

" ak(nn)pk (Vl, .. 'k;R)-i, k=0

n+l

E. b k(n,O)p k(l ..... kP); O)

V n+ k=O --- Cos ((0
a" k- (n'O)pk IO) D.. 'kV) ; 0 )

k=O

and note that cos(x) is monotone for x E [0,n]. o

Unfortunately, the method just outlined breaks down in the

-J presence of noise. To realize the effect of noise define first

-.. cos2n -A

Cos

i-2-



Then we have

Lemma 3.1. The sequence of probability densities (fn(k;O))

satisfies

J fn(X;e)cos(x)d---*cos(9), 0 s 0 s v.
- -it

Proof. Suppose 0 s 0 < -. Then for every c > 0 there exists a

8 > 0 such that

au inf Icos > b sup lcos [011.
IA -0 I <2 lA--0l c

Therefore

" I f n ;)d) s 28 a" --- O, n--e®.
-I . -e I> 2 6 a2n

Similarly for 0 it

C inf Icos 2! d a sup Icos

so that again

J-x- f n ( <n - 26 c 2 n

Since cos(k) is continuous and since f n(X;) is for each n a

probability density function with parameter 0 it follows that

4 lim fn(;O)cos(k)dA = cos(0), 0 5 0 s -.: ;:.n-. w I-_

Theorem 3.2. Assume a 2 > 0. Then for every 0 e [0,-]

12



n+1
V bk(n,O9pU,;r
k=O k=-- cos (e] n--+ a

n

k E ak(nO)Pk(V I .... 1)k;-)
k=O

and the same holds if the V are replaced by the V, and -

by 0.

Proof. When wj = 9 for some J, the claim follows by bounded

convergence from (3.1). Otherwise define

b' r. max Icos r I

and note that the method used in proving Lemma 3.1 yields

7r b') n _ ---+ 0, n---a.
oIcos2nr- d

Apply now Lemma 3.1 to the ratio of the two integrals in (3.1).

Corollary 3.2. When 2 > 0,

n+ 1 )- - + I, ' n+- , n--+

* or equivalently

-rE n+1D  -EDn+1N- --+ 0, N-7r , .

Proof. The proof follwos from (2.1), (2.2).

Corollary 3.3. a2 0 if and only if for some 0 e [O,n], 0

{ uI ..... I.p

n+1Vbkln,Op MV.. kV;U)-~A k k )k(''

lim -=0 - cos (e)n

Oka0

13
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and the same holds if the 1) are replaced by the V, and -

by 0.

3.2. The Slutsky filter.

For k,m,n = 0,1,2,..., put

y(k) . [(1_),(1+S)n]kz , t - 0,±1 ....

Then (Y(k)) is a real valued stationary Gaussian process with

mean 0. The transfer function of this linear operation is given

by

H k(A,) =(Ie-IX km l+e-il kn

with squared gain

2 k(m+n)(c km (+o )knJH k(W 2 I1co X)=+sA

The squared gain is symmetric and unlimodal in [O,-] with a peak

occuring at

cos- n-m
c LO +mj

Let D denote the number of zero-crossings in (y(k))N
H +1t t-1,

where m,n are fixed and are chosen in accordance with a prespeci-

fled A
* c

Results similar to those obtained in the previous discussion

can be obtained in terms of the HOC (DH ), k - 1,2,..., the dif-

ference being the fact that unlike the case treated earlier the

convergence to the w can be expressed directly in terms of

expected HOC. This Is readily seen from the equality

14
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wED Hk+]= _ ei) IHkO) 2dF(A)

Cos N_1 
I t IHkX )t 2 dFl(X)

)2m n] k , O
a~ 'j [ ( -coswoj) ( l+cosw csoj r [ ( - o ) m cosos ) nkcosk.dk

-J=i 0
" a 2
P 2 m( .n)k C J[(-cosA) i+cookiflkJ~ ai (-C 84[J (1c s t-oi )m( 0~o~ ) kdXt

(3.2)

2Theorem 3.3. Assume a. = 0 and suppose m,n are such that

l )n > max ((1-coo g JlMll+cos W J)n)

.Then

if EDHk
~N-i k 'r' k---a.

N-1

Proof. From (3.2)

cos N-i J-- cos( r)

and cos(x) Is monotone in (0,n]. 0

2Corollary 4.1. Assume a = 0 and suppose m,n are such that

Xc is sufficiently close to wr" Then

i, EDHk

N-~~~F --4 'k-®

Proof. In (0,n] (1-cos A)M(i+cos k)n is unimodal with the peak

occuring at c*

Thus by varying m,n so that k lands at or near the wc

we can detect all the frequencies provided the process Is purely

15
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harmonic.

Again, as In the previous case, in the presense of noise this

procedure breaks down and the expected normalized HOC converge to

Theorem 3.4. Assume a 2 > 0. Then for m~n such that X
r c

cos- ((n-in)/(n+m)), we have

1rED H

k-o N- I c

Proof. Define a sequence of probability density functions on

=Pk [(,_coo A) (1-icos )~ -' - 1'.

j [1(1-cos A)m(1+cos A)n J dAL

Then for every C > 0 it is not difficult to see that

fIX-A ?c () 0,k-

frmwhich follows that

(3.3 V (A)cos(A)dXA-4cos(A c' im

Define now

h(A) = (1-cos X)m (l+Cos A) n

and without loss of generality assume 0 < kA < w. Consider two

cases. First, suppose wr = 'Then obviously h(w i) < h(A C).

o r, arr (h(w j)/h(k c)) k-.-0, k-.+a. Also, for sufficiently

small1 ~>0

4. 16
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k k

ulax(h k(A c k6 h k (AC+ + 26 --. 26, k-.a
h (kC

and let 6-.#O. We have shown in fact that

k rD

Therefore, from (3.2) co N_1j*cs c~k.. We

I for all J, then by a similar argument

*p (W i) -- + 0 k-..I M

so that from (3.2) and (3.3) again co rDH+1 -4 COS(C) Thus
N-1 J

In general

nED

From the last two theorems we have

Corollary_ -..a 0 if and only if for k w j

* 1ED H __

N-1i

3.3. The alpha filter and the case of a single frequency.

Although the results of the previous two subsections are

',omewhat pessimistic when o, > 0, the fast conclusion that the

addition of noise makes the detection of py. from HOC

.~. ..- -~17



impossible Is far from being true. Successful detection can be

achieved even in the presence of appreciable noise, provided care-

fully designed filters are used in generating useful HOC sequences.

A clue to this effect is furnished by Theorem 3.4. The theorem

shows that in the presence of noise, the normalized expected HOC

converge to A c The precise reason for this fact is that as

k--w, more and more spectral weight is given to Ac' rendering

it dominant. As a result the sequence /ED /(N-i), k - 1,2,...,

k

is attracted to A c and convergence occurs. When Ac coincides

with an w the resulting sequence of expected normalized HOC

will converge to it. This shows that by controlling and shifting

the spectral mass we can force the sequence of normalized HOC to

converge to desired frequencies.

More generally, from (2.1) we obtain the basic spectral repre-

sentation for the expected number of zero-crossings (since wI > 0)

nED J cos(w)dF(w)
(3.4) Cosl---I =

f dflw)

(See Kedem (1986) for a discussion and additional references con-

cerning this representation.) From this representation we see

that nED1/(N-1) is a weighted average of the spectral support.

*Therefore nED /(N-i) will change its location with shifts in the1

spectral weight dF(), and so this quantity can be "directed" to

admit values near or at discrete points in the spectral support.

The point of this discussion will now be demonstrated in the

special case when p - 1. We will show that w 1 can be detected

18



by a L'rtain sequence of expected normalized HOC that converge to

1regardless of the magnitude of the signal to noise ratio.

Let p - 1,

Zt =A co4-Bt inw1t + t

where A,B are Independent N(O,a 2 random variables and mnde-
I2

pendent of the white noise (cj , N(Oura)2 Define the

a-filter by

Y t (1-a)Z t+ aY t-1t - 01±1l,...,

and -1 a s 1. The squared gain of this filter is given by

I Ha (Q)I 1 = (1-a) 2' < '

1--2a, cos (i + a

Let D H be the number of zero-crossings In Y1 ....,y YN Fix an

a 0  e (-1,1) and let 
DH

a -cosf N1j], 0,1,2,....

Theorem 3.5. Set p - 1. Suppose the noise process t C is

white noise. Then as J--ow,

a CO(

or equivalently

N-1 I

regardless of the signal to noise ration (

Proof. Observe that

19
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JIa(a0 ~ d) 1 1 +a

and

co (a W)12 ian1-a

Therefore, from (3.4)

co DH ncos(-w)IH (w)12dF((j)

N~jJIH a(() 2dF(R)

9JCOS((A))Ha((*)) d' X(W) + co(~%(jjdF (w)
0 0

n IH a (w1 dF x () + If %(Jl2dCW
00

* - )C2 Cr2

(3. ) -2a co ( 1 022 - 2o( 1  1 +a

(35)(1-a )a2 I C2

1-20 Cos W 2 1 +

i ED 
I

and we see that Cos[ N~ ] is a weighted average of cos(w1 )

and ai. Suppose 0o 5 cos((J). Then

xD H

SCos 0 cos((1)

and

xED H ftED

20
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or more generally

Q0 S a I ... ! a ... cos(W1).

Thus (aj) is a monotone increasing and bounded sequence which

converges to a say. But then from (3.5) we have

2
C
-i (a - cos(w1 )

1+a
(3.6) a - cos( 1 ) = 2 2

*2+
1 - 2a cos(w 1 ) + a 1+a

Suppose a - cos(w1 ) 0 0. then dividing both sides of (3.6) by
*

a - cos( l) leads to

a2

1+a <1=2 2( 1-a )(71 +

1 **2 + -----T
1 - 2a cos 1 + a 1+u

and hence to a contradiction. Therefore

-,, a - cos( 1 )

or
nEDH

N-1 -I*

" When a0 > cos(w1) the sequence (a } is monotone decreasing

and bounded and by the same argument converges to cos(w 1 ) from

above.

From the proof of this theorem we can see that any filter

with transfer function H(.) which depends on a parameter 0

(-1,1) can be used in the detection of G) All that is needed

is that
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J cos( )IH (I 2 dw M 1 jH0 (W)2d.

When p = 2 we can prove in the same way that for large J,

-EDH /(N-1) admits values between 1 and (2"
a

Theorem 3.6. Let p - 2 and choose an t0 c (-1,1). Then regard-

less of the signal to noise ratio (a2 +2 )1/2a

1 2%a -- a E: [Cos (1 2,Cos (1 ]

or equivalently

EDH

- a
N-1 2 [

Proof. As before a is monotone and bounded and thus converges

to a, where
ii2 ( 2 2+12 2 +2

a 2 (1-2a cos w CO o + 2 (1-2a cos +a )cos
cos W 2 2 2 2

2" 0(-2a Cos2+ )+ 2 (1-2a cos W +a 2 )

-. < cos (1. 
o

3.4. Detection of periodicities by HOC.

The generalization of Theorem 3.5 to the case p a 2 requires

more sophisticated filtering which we shall not pursue here. In

practice, the generalization takes a somewhat different route.

Since the normalized HOC tend to admit values near or at dominant

frequencies, the central idea Is to evaluate the periodogram at

the normalized HOC. The combination of HOC and the periodogram In

this manner has been reviewed and discussed in Kedem (1986).

22



4. A complete solution

Theorem 3.5 shows that in one special case it Is possible to

determine a single frequency from HOC regardless of the signal to

noise ratio. In this section we give a general solution to the

problem of determining P, wit .... wp in the presence of any

colored Gaussian noise (t) with continuous density f(w). But

rather than using HOC directly we use functions of HOC. Generally

speaking, it is sometimes more beneficial to use functions of HOC

and in particular the correlations (p(k)) which by (2.3) are

functions of expected HOC. Thus, we will show that the oscillation

in (Zt ) as depicted by the expected HOC, obtained by repeated

differencing, determines the discrete frequencies and their number.

Recall (2.3) and define

N-i

N 3 i+21 (l-i)pn(Vi.... n;-)cos(nX)]

n-1

N-1

N- 3/41 1+2 (1-2n ' ' V ; 0 )cos(nk)].

n=1

We shall investigate the asymptotic behavior of (hN( )) and bhow

that this sequence of functions of expected HOC determines p and

wit ... OW regardless of the signal to noise ratio where the noisei'" p

is any colored noise. This is done by showing that as N--..,

the sum represented by hN(k) vanishes for A o wJ, j =

but diverges otherwise. In this regard the key idea is the defi-

nition of an A -interval.

Definition 4.1. Let (g.(k)) be a sequence of continuous func-
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tions on [0,n]. Let A0  be a positive number and IN (.,f) a

subinterval of [0,n]. We say that IN = (cx,3) is an A 0-interval

of gN(k) if the following definitions are satisfied.

(a) gN(k) < A0 1 . 1 N

(b) gN(a) = gNI/) N A0

(c) The Lebesgue measure of IN > N- I 2

We will show that asymptotically, the number of A -intervals

of hN(A) is equal to p-i.

We start off with a lemma due to Wang (1983). The upper

bound given here is an improvement over the one given there.

.' Lemma 4.1. Let {((n), n = 0 ,+,...) be a real valued stationary

Gaussian process with mean zero, and square integrable spectral

density function f(A). Then for any a 0 0 and k such that

k = 2a + 3/2 we have the inequality

. n
N

Ktsp k ZI .nne 1I2 , (41r + r4-.,)/ 2f 2 (A)dA.
kNn-1

Proof. For every fixed k

N N N-i

(Zn) nae I, = 2tmma+ 2Y (m) (m+1)1h'(m+1) cos k +

n-1 m=i m-1

+ 2t(N)t(1)Nacos(N-1)L

' N-1 N-n

'2 (m)t(m+n)m (n+m)lcos(nA)
n=O m=1
N-1 N-n

s 2Yj,:t(m)k(m+n)mc'(n+m)a ,

n=O m-i

24



N-i N-n
,, -2jjj[t,(ml (m+n)-R(n)]mc(n+m)aCL +

n=O m=1
N-I N-n

(4.1) + 221 1--LR(n)mo(m+n)a,

n=O m=1

where R(n) = E.(m),(m+n). Note that the last two expresssions in

the sequence of inequalities are independent of k. The first of

these terms can be simplified by introducing the lag-process

n Y(m) = (m)t(n+m) - R(n), m = 0,±1

where EYn (m) = 0 and by the Gaussian assumption

. EY n(m)Y n(m+k) = E?(m)t(m+n)t(m+k) (m+k+n) - (n)

R 2 (n) + R2(k) + R(n-k)R(n+k) - R2 (n )

R 2(k) = R(n-k)R(n+k)

so that (Y n(m)) for each fixed lag n is wide-sense stationary

with mean zero. Also, f we define

R Yn(k) = EYn(m)Y n(m+k), k - 0,±l,...,
n

then by Cauchy-Schwarz inequality and orthogonality of sines and

cosines

I R (k) (R2 (k)+R 2 (k))
k' "=--OD k="

2 R 2 (k) 54 [ f2 (AldA..

Therefore (Y (n)) has a continuous spectral density fn 0),
nn
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say, such that

(4.2) sup f (A) i 4n f ((o)dw .3.% n
X J~f

uniformly in n. Going back to the first of the last two expres-

sions in (4.1) and by invoking in succession first Cauchy-Schwarz

-inequality and then (4.2) we have

N-n

El (m) (m+n)-R(n)]m (m+n)a

m= 1 N-n N-n1/

SEl 
Y {El Y (m)m a(m+n)a 2}1/

2

m=1 m=1

_ r- "N-n 1 /2

- tM (m+n) e I f (X1

-- m=1

7r N-n
- {4n f2 (A.)dX t ma (m+naeii

m l  2dl/ 2

-7r -I m- 1

{ 4n f ()dA, 2n"N" N2a}

n// = 2- f (A)dXN

For the last expression in (4.1) we have

1N- N-n N-i N-n

LIL R(n)ma (m+n) a R(n) ma (m+n)a

n=O m=1 n=O m-1

1/2 2 ~1 2a2a3/
!s NI / 2 R2(n) N N2 2n  f (A)d N

- "26
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Returning to (4.1) equipped with these new expressions which are

independent of 1, we see that

ElsuPt N (n)n ae Ink (21
n=1

2N'- 2 f2XldX'N2a+1/2 + 2 (AldA.N2a+3/2

= (4n + 4/-W) 2J f2 (A)dA.N2a+ 3 /2. a
-i

Next we show that hN () tends to be inflated as N--.+0 in small

neighborhoods of the w and vanishes elsewhere.

Define the set A by

p N-3/4 -/
• ~~ n, (k = ({ O,r] . N ! JL-W I !s 2nr-N-/.

..- J=1

This set is made of [O,n] minus neighborhoods of size 2N 3 /4

around the (oJ.

-"" Theorem 4.1. Let R (k) = EZ Z Then
Z t t+k*

(a) for each fixed J

2a2 1/4
S., sup hN(A ) > 2(

ft i2f (0)

(b) For N sufficiently large such that
1. 1 N- 3/4 /sin( 1N-3/4) 1 /

2. for 1 > 0, N I

3. for (,) < n, N-3 4  -
p 'p p

the Inequality
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sup h (AL 5 a2 + (4,+,r'-) 21 f2(A)dA N-1 / 4

Aup hNA RO) L iJ -"
holds.

Proof.

N-i

R Rz(O)h NM = N - 3 / 4 [1+2 (-Nn( .... n ;n)cos(nA) Rz(O)
n=1

N-1

=. , 1 (1- )Rz(n)cos(nA)
In=1

= N-7/4[ N R (0)+ 2N- (N-n)Rz(n)cos(nk)I
M-1 n=1

= N-7/4E  Znn 2 n - n

--
N EN

m=1

Define

N in2Nk
_1 2.Znn2 sin 2

m=1

Then

N t N it N
E Z n -inA 2 e i noe-m I2 )+ ein()-A 2 f 1 )dw

n=1 -n n-1 -1

p 2 N in(( J -X) 2 N in l w +X ) n=. I e + I e + - (n)e

n=1 n= n=

* 28
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p si2n Pj-. sin ( x2N2 N Nin

j n2 1 2  + i (n)e I2

= isin (W+A) n-I

Now observe that since ,q(k) has a maximum at A = 0,

1 4N 2

lnf (A.) = ,1(vh/N) - n 2-. -

Ac(O,-/n) sin2 2

Therefore, over the A-interval IA- W < -/N
N

N- 71 4 l -inA

hN(A)= R EXZne 12

n-1

N-7/4 1a2T7X_-w

N -7/4 1 a2 4N2

nRZ(O) j 2

or, for a fixed j

2a 2 1/4" Inf h N (1) > -2 1N
mt h< 7 2Rz (O)

To prove the second part of the theorem observe that for AX A

and N that satisfies 1.,2.,3. we have

1 -3/4 1 -3/4
-N I N

By using Lemma 4.1 with a= 0 we finally obtain for A A

N -inkhk)= (" - EIXZn@ 12

NV R z(O) n
n=-1
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N-7/4 p-

+ EIY'P(n~e I

n=1

N-  1 _ 2 11
P[z 3 2 1

"J-I [sin2 i(0j)) sin2(2 J+)

+~~~sn N- N/4 El41 -n

RZ(0 1 4 .+/i-) 2- f2 (1)dA'N 3 /2

N 7 /4 1 -1/42 2  11 1RZ-O) i 2 :j isi +( -3 4 + si

+i- R ()N 74() XN/' N- 7/4 1 o25N3/2 N / _1/()d

N"' 4- 5Z02 + 14N+/ --T) 2f t2(1)dA

and note that the last expression is independent of i c A. r

With the help of this theorem we can finally determine p and

the w's by constructing the A0 -intervals of hN(k) and letting

N increase. It is easy to see that for any fixed N. the number

of A -intervals of hN(A) is finite and that the A -intervals

are well defined. This is the subject of the next result.

First we obtain p.

Theorem 4.2. Let A0  be an arbitrarily chosen positive constant

and define

PN 1 1 + the number of Ao-intervals of hN(;).

Then regardless of the signal to noise ratio
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lim PN = p "

Proof. By Theorem 4.1, when N is sufficiently large and for k

such that

.iD" A [I N3/4 - 3/4
, N314 ], 1 s i p-1

*-. we have

hN(k) < A 0,

and

2N > m W 2N 3/4 -3/ 4  -1/21.( +1-i - 1mn (j -p--2 > N - 2

.!5 J-p-1

* On the other hand for large N

lim hN()) > A0.

-j I <R

Also, note that the intervals where hN(A) must cross A0  at

. least once are such that

0 < W N3/+ N- 3/4 ( --n-1/4 < -1/2
0<(. 1+N -3 /4) - (i+ ) = N31 (1-1iN' 4  

<N
1 2

and

0 < (wi-n/N) - (wI-N-3 4 ) = N- 3/4(-N - 1/4 < N- 1 / 2

It follows that between (i and w i+' 1 - 1,...,p-1, there is

exactly one Ao-interval of hN(k), provided N is large enough.

Now consider the two extreme points &,,p Assume that 0 < <I <

S<-. Then for large N
p

sup hN(k) < A0
0A <& 1N 3 4

and
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c~N sup h N(A) < A 0 'wp N- 3/4 <0. <

Therefore, h..) does not crosi level A0  over [0,w -N -3 4 )

(wp +N - 3 / 4 < I s a] and consequently hN( ) has no A -intervals

over [0I,)i) and over (, ,r]. Thus PN--p, N--#
U. p

From the proof of Theorem 4.2. it is clear that the AO-

intervals of hN(A)
U.

' I (bJNaJ l) i - 142 P..,I' J,N a Jbi, ,a J+1,N ),.1 2.... -

satisfy for large N and for some a1,N'bp,N , 0 " a1, N 5 1 <

bl,N < a2,N < w2 < b2 < < bp-1,N < a pN p b pN

where

max (b J,N-a J  ) < 2N- 3 /4

We finally have

Theorem 4.3. Suppose (aJ0N),(bJ ,N) correspond to the

A0 -intervals of hN(A). Let

(.) E J ,N) ,

Then for /3 < 3/4

Urn N13 A -.6 410

regardless of the signal to noise ratio.

The last three results show that

Corollary 4.1. In the Gaussian case, p,(.),... ,) are completely"'determined by ( ED i )Jc
dei bPJ provided the spectral density of the

noise term is square Integrable.
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